
Database and Implementation

DBMS
UNIT -5

feedback/corrections : vibha@pesu.pes.edu VIBHAMASTI
© vibha’s notes 2021

DATABASE SECURITY

Threats to DB

1. Loss of integrity (unwanted modification)
2. loss of availability (required access revoked)

3. Loss of confidentiality

security mechanisms
• Principle of least privilege - multiuser DB system
- DBMS : database security and authorisation subsystem
• Two types of security mechanisms

(a) Discretionary Access Control

• Grant privileges to users

°

Access specific data (files
,
records

,
fields) in a specified

mode tread
,
insert

,
delete

, update)

(b) Mandatory Access Control

• Enforce multilevel security
• classify users 4 data into different security classes

• Eg : permit users at a certain level to access data from its

level and all the levels below its level

•

Eg : role - based security

© vibha’s notes 2021

GRANT privileges ON object TO users [WITH GRANT OPTION]

privileges

REVOKE [GRANT OPTION FOR] privileges ON object

FROM users {RESTRICT | CASCADE}

SQL : GRANT

that can be specified

• SELECT

° INSERT (Col -name)

• INSERT

• DELETE
• REFERENCES cool-name)
• REFERENCES

SQL : REVOKE

TRANSACTION PROCESSING

• Transaction : executing program that forms a logical unit of
DB processing

- includes one or more DB access operations CIRUD)
-

specify boundaries with begin transaction and end transaction

statements

- can be read - only or read- write

© vibha’s notes 2021

• Transaction processing systems : systems with large DBS and

concurrent users

DATABASE MODEL

• Database : collection of named data items
• Granularity : size of data item

• Data item : DB record
,
disk block

, individual field of a record

• Simplified model ; each item has unique ID

Database Operations

(1) read - item (x) : reads DB item ✗ into prog variable (also

named ×)

steps :

→ find addr of disk block that contains item X

→
copy block into a buffer in main memory

→

copy item ✗ from buffer to program variable ✗

(2) write - item (X) : writes prog variable ✗ into DB item ✗

steps :

→ find addr of disk block that contains item ✗

→

copy disk block into buffer in main memory
→ copy prog variable ✗ into item X 's location in the buffer

→ store updated disk block from buffer back to disk

• read- set of a transaction : set of items a transaction reads

a write - set of a transaction : set of items a transaction writes

© vibha’s notes 2021

DBMS Buffers

• DBMS maintains several data buffers in main memory
• Altogether called database cache

• Each buffer : stores 1 disk block

• If buffers all occupied and new block read
,
buffer replacement

policy used
- Least Recently Used CLRU)

CONCURRENCY CONTROL PROBLEMS

• Example DB : airline reservation DB

- each record : one flight 's no . of reserved seats

(1) LOST UPDATE PROBLEM

• 2 transactions access same DB have operations interleaved

such that values of some DB items are wrong

• Eg: read before write

© vibha’s notes 2021

(2) TEMPORARY UPDATE / DIRTY READ PROBLEM

• Transaction updates a DB item and fails

• Another transaction reads dirty item before it is rolled back

(3) INCORRECT SUMMARY PROBLEM

• Transaction 1 is calculating aggregate summary on DB items

• Transaction 2 is updating DB items

© vibha’s notes 2021

(4) UNREPEATABLE READ PROBLEM

• Transaction 1 reads item twice

• Value changed in between reads by another transaction

C

different ✗
values

C

(5) PHANTOM READ PROBLEM

• Transaction reads an item twice

- Item deleted between reads

• Error thrown

© vibha’s notes 2021

Transaction 4 system concepts

(a) Transaction operations

1- BEGIN - TRANSACTION

- marks beginning

2. READ or WRITE

• read or write operations on DB executed as a part of a

transaction

3. END- TRANSACTION

• specifies that read / write operations have ended

• here
,
check whether changes in transaction to be permanently

applied committed) or aborted

© vibha’s notes 2021

4. COMMIT- TRANSACTION

• successful end of transaction
• all changes safely committed to DB

5. ROLLBACK (OR ABORT)

• ended unsuccessfully
• changes undone

(b) System log

•

Log keeping track of transaction operations
• sequential , append-only file kept on disk

•

Log buffers in memory with last part of the log file
- When buffers filled

, appended to file on disk
•

Types of log records

© vibha’s notes 2021

Desirable Properties of Transactions

ACID

characterising schedules Based on Recoverability

• Schedule/ history:S of n transactions T, ,Tz, . . . ,Tn is ordering of

operations of the transactions
,
interleaved

• Total ordering of transactions : order of operations in s said to

be total ordering if for any two operations , one occurs before

the other

• Shorthand

© vibha’s notes 2021

• conflicting Operations in a schedule : if they satisfy all 3
i. belong to diff transactions
2. access the same item ✗

3 . at least one of the operations is a write - item(X)

- Eg: Sa : ricx) and wzcx) } read-write

rzcx) and w
,
(X) conflict

will) and wzcx) } write -write
conflict

- 2 operations conflict if changing their order can result in a

different outcome

• Complete Schedule : if all 3 hold

© vibha’s notes 2021

° Recoverable schedule : once committed
,
a transaction never needs to

be rolled back

- S is recoverable if no T in S commits until all other

transactions T
'
that have written some item ✗ that treads

are committed

• Cascadeless schedule : every transaction in S reads only items written

by committed transactions

- no cascading rollback will occur

• strict schedule : every transaction in S can neither read nor write

an item ✗ until the last transaction that wrote ✗ has committed
- recover : before image

© vibha’s notes 2021

Characterising Schedules Based on serialisability

(1) Serial schedule
• All operations of every T in s are executed consecutively in S

• No interleaving

(2) Serialisable schedule
- Equivalent to serial schedule

(a) Result equivalence
- produce the same result estate) of DB

- not always foolproof

(b) Conflict equivalence of two schedules

- relative order of conflicting operations is the same

© vibha’s notes 2021

(c) View equivalence
- more complex : later

• Serialisable schedule : S is conflict equivalent to a serial

schedule s
'

• Reorder non- conflicting operations on s until s
'
is formed

• A 4 D are equivalent (conflict)

•
.

'

. D is serialisable

• A G C not equivalent

© vibha’s notes 2021

Testing For Serializability
• Construct a precedence/serialisation graph GCN

,
E)

• Each node is a transaction

• Each edge ei : Tj → Tn for a pair of conflicting operations
where it appears first in Tj and then in Tn

Q : Draw precedence graphs for the following

© vibha’s notes 2021

(A) T
,
→× Tz (B) 1-2×-7 T ,

(C) Tz T
,

(D) T
,
→× Tz

Q
not serialisable

0: Draw precedence graph

© vibha’s notes 2021

Ti T2
non -serialisable

Y[
y
,

/ 92

T2
serialisable

t
,

%Y

© vibha’s notes 2021

VIEW EQUIVALENCE

• All 3 conditions

. constrained write assumption :
-

any write operation will) in Ti is preceded by a ricx)

in Ti and the value written by will) in ti depends only
on the value of ✗ read by rilx)

- computation of new ✗ is function FLX) on old ✗

- opposite of blind write

TRANSACTION SUPPORT IN SQL

• PSQL: begin ; statements ; commit/ abort/ rollback <sp>;

• Every transaction has either rollback, abort or commit

• Characteristics of transaction set by set transaction statement

d) Access mode

• read only
• read write - default [except for read uncommitted)

© vibha’s notes 2021

(2) Diagnostic area size

• no . of conditions (n) that can be simultaneously held

in the diagnostic area

• supply feedback info on n most recent SQL statements

(3) Isolation Level
• read uncommitted
• read committed
• repeatable read

• serialisable - no dirty read , unrepeatable read, phantom
reads

CONCURRENCY CONTROL

• Enforce isolation
• DB consistency

1. Two - Phase Locking Techniques

• Lock CX) : requesting transaction locks item ✗

. Unlock CX) : item ✗ made available to all transactions

© vibha’s notes 2021

1- 1 Binary locking

• Two states : locked and unlocked

• Distinct lock with each DB item ✗

- If value of lock on DB item ✗ =L
,
✗ cannot be accessed

by operations requesting it
• If value =0

,
can be accessed and locked

• Current value of X 's lock : lockCX)

• Operations : lock - item (X) and unlock - item(X) atomic

• Lock table : record of items currently locked

° Lock manager : manages locks , stores into lock table

© vibha’s notes 2021

1.2 Shared / Exclusive C.Read/Write) Locks

• several read accesses or single write access

• Multiple-mode lock
• Operations : read -locka) , write- locka), unlock(X)
• IOCKLX) has 3 possible states

• Lock table entries : lock(X)

←
value

< data - item - name
,
lock

, no -of- reads, locking - transactions>

• Atomic operations

• read- locka)

• write - lock LX)

© vibha’s notes 2021

• unlock(X)

° Lock conversion

- Upgrading: if T is the only transaction holding a read
lock on ✗ at the time it issues a request for a write
lock

,
the lock can be upgraded

- Downgrading: if T holds a write lock on ✗ at the time

when it issues a request for a read lock , it can be

downgraded

- Operation definitions to be modified to account for this

functionality

• Locking alone does not guarantee serialisability

© vibha’s notes 2021

{ }
i

if
}

TWO - PHASE LOCKING PROTOCOL

• All locking operations precede the first unlock operation
in the transaction

☐ Two phases : expanding / growing phase , where locks can only be

acquired , and shrinking phase , where only existing locks can be

released and no locks can be acquired
- upgrading of locks in expanding phase
- downgrading of locks in shrinking phase

© vibha’s notes 2021

{
i I

lock point

gro
"
"

"
"

"

%%§
Phase
✓

2. Variations of ZPL Systems

2.1 Basic (described above)

2.2 Conservative /static : T must lock all items it accesses before

transaction begins execution Cto prevent deadlocks)

- Predeclare read - set and write- set of items

- If cannot lock any one item
,
does not lock any items

2.3 Strict : T does not release any write locks until after it

commits or aborts

- strict schedule for recoverability
- not deadlock - free

© vibha’s notes 2021

2.4 Rigorous : T does not release any locks until after it commits

or aborts

- easier to implement than strict

- expanding phase until it ends

Deadlock Prevention

• Transaction timestamp TSCT
'
) : smaller for older transactions

,

unique for every transaction

Protocols

1. LOCK in advance
• If any one not available

,
lock none

2. Ordered locking
• Lock DB items in a specific order

© vibha’s notes 2021

3 . Wait - die

• Ti tries to lock item ✗ but cannot because Tj is holding
it

• If TSCT;) L TSCT;) , Ti is allowed to wait
• Otherwise

,
abort Ti (younger> and restart later with the same

timestamp
• New old allowed to wait

,
new young killed

4. Wound - wait
• Ti tries to lock item ✗ but cannot because Tj is holding
it

• If TSCT;) C TS CT;) , abort Tj Cyounger) and restart with

same timestamp
• Otherwise

, Ti lyounger) allowed to wait

• New young allowed to wait
,
new old wounds existing young

5 . No waiting

6. cautious waiting

DEADLOCK DETECTION

1 . Wait - for graph
• If cycles present , deadlock

2. Timeouts
• If Ti waits for longer than threshold

,
abort transaction and

assume it was deadlocked

© vibha’s notes 2021

Concurrency Control Based On Timestamp Ordering

• Serialis able in same order as order of timestamps
• Timestamp ordering CTO)
• Each item ✗ has 2 timestamp values : read-TSCX) and

write - Tscx)

1. Basic TO

• If transaction T tries to issue a read -item (X) or a

write- item (X)
,
the value of TSCT) is compared with read -TSCX)

and write -TSCX)

• If ordering violated
,
abort and rollback (cascading rollback)

© vibha’s notes 2021

• No deadlocks

• Starvation

2. strict TO

• Transaction T issues a read- item (X) or write- item (X) where

TSCT) > write- TSCX) (younger)

• read/write operation delayed until T
'
commits or aborts

CTSCT ') = write - TSCX))

• Simulate locking

• No deadlocks ; T waits for T
'

only if TSCT) > TSCT
')

• Same with write - itemlx) and read -TSCX)

• Conflict serialisability and strict

3. Thomas
' write Rule

• Does not enforce conflict serial isability

© vibha’s notes 2021

NOSQL

•

Many reads
,
min writes

• semi - structured

characteristics related to distributed DBS and systems

1. Scalability chorizontal scaling
2. Availability
3. Replication models (master-slave , master- master)
4. Sharding of files (horizontal partitioning)
5. High performance data access chastening or range partitioning)

characteristics related to data models and query languages

1. Not requiring schema

2. Less powerful query languages
3. versioning

types OF NOSQL Systems

1- Document -based (MongoDB, couch DB, Raven , Terra store)
2. Key-value stores (Berkeley DB , levelDB, Mem cached , Redis, Riak)
3. Column- based (Cassandra

,
Amazon SimpleDB , Hbase , Hypertable?

4. Graph- based CFIOCKDB, Neoltj , Orient , Infinite Graph)

© vibha’s notes 2021

Comparison of Different NoSQL DBS

D: What DB to use ?

(a) Calculate average income relational

(b) Build shopping cart key - value

(c) storing structured product information document

(d) Describing how user got from point A to B graph

© vibha’s notes 2021

MONGODB

• Document CJSON)

to
unique - id : auto indexed

• Object Id : 12 bytes (4+3+2+3)

Data Models

1. Embedded Data Model

• All related data in single document

2. Normalised data model

• INF

© vibha’s notes 2021

Commands

1. Use command
• connect Cor create and connect) to a DB

2. db command

• show connected database

3. Show dbs / databases

4- db - dropDatabaseC)

• Recall : lab week 1

Q : Display first document in collection employee

db - employee . findOne C)

© vibha’s notes 2021

Display the document of employee with empid=2

Return documents where birth is between 1940-01-01
and 1960-01-01

db.employees.find({“Birth”: { $gt: new

Date('1940-01-01'), $lt: new Date('1960-01-01')}})

• Storing Session Information
• User Profiles, preferences
• Shopping Cart Data
• Article/Blog Comments
• Product Categories/Details/Reviews
• Internet Protocol Forwarding tables
• Telecom directories

Q:

db - employee . findOne ({ " empid
"
: 2 })

Q :

KEY - VALUE DB

• No query language ; set of operations

• Use cases

© vibha’s notes 2021

•

key : unique ID

• Value : text
,
number etc

DYNAMODB

• Cloud- based
,
AWS

• Tables
, items, attributes

• Number of attr- value pairs in an item

• Table name 9 primary key

•

Types of Pks

© vibha’s notes 2021

COLUMN - BASED

• Group columns into column families

© vibha’s notes 2021

Hbase Usage

1- Create table table name

1

T
column

family name

table name
2. Insert values

t

T P T

row key column value
name

3. Retrieve values

✗
specific row

T
all rows

© vibha’s notes 2021

4. CRUD Operations

GRAPH DB

• Relationships b/w data important

• RDBMS : join for relationships
Graph DB : connections alongside data

• Neo 4J : nodes and relationships

• Nodes : K-v pairs (any number) called properties

• Relationships : connections between node entities

- direction

- start node

- end node

- properties

• Cypher Query Language CCQL)

© vibha’s notes 2021

Graph vs RDB

• RDBMS

• Graph

Use Cases

• Fraud detection

• Network monitoring
° Recommendation engines

syntax

. Week 3 lab
© vibha’s notes 2021

© vibha’s notes 2021

IN-MEMORY DATABASE

• In- memory storage and computation

• Fast

• Risk of data loss due to server failure

• Volt DB

© vibha’s notes 2021

