DBMS
UNIT- 5

Database and Implementation

feedoack [correttions: vibha @ pesu.pes. edw VIBHA MASTI

DATABASE SeCURITY

ThreaYe +o DR

1. Lose of integrity Cunwored modifieationd
a. lose of availability Crequived access vevowed)
3. Loss of confidentiality

ym%/ Meshanismy

Principle of leask privilege - wultinser 0B System
DBMS: database tecurihy and Outhorisafion Subrystem
© Two twpes of sewrity medhanisme

0 Discrerionary Access Cowntvol

Lot privileaes Yo wsers
Aecess specific daro CHiles) recovds, ferds) wn o specified
mode C(read, insert, delete, update)

(o) Muvxda’m\b Accest (owhrol

Enforce mulbitevel secari

tlassify wsers 4 dara into different cocurily closses

€g: permit wsere ok o certaln level fo access data frowm s
level and all the levels ‘oelow ite level

€y: vole-based seturity

SQL: GANNT

GRANT privileges ON object TO users [WITH GRANT OPTION]

privileges Yhat can ‘e Syedhea\

SeLect
INSERT Ceol-nawe)
INSERT
OeLeTe
* REFERENCES Ciol-name)
* REFERENCES

SQL : RevolLe

REVOKE [GRANT OPTION FOR] privileges ON object
FROM users {RESTRICT | CASCADE}

TRANSACTION PROCESSING

' Transoction: execaling propyram ok forms o logical wnit of
DB process'ur\%

- includes one or more OQ access operatans (IRVD)

- SPeoiF& boundaries with begin fronsoction omd end trantocHon
Storements

- tan be read-only or read- write

Trons achm Yrocecs'ma Systeme: susreme wira \arye DRs awd
tonturvent wusere

DATABASE MODEL

* Dodnlonse: colechion of named doto eme
biranularity: size of data iYem
Data. irem: DB vecord, Aitk blotk, individual feld of o vecvd

Simphfied wmodel ; each em has unigue \D

Dotabare OpMautumg

(1) reod- rem (XD - reads 0L tem X inbo prog varioble (alo
nawmed XD

— 84e¢ P ¢
- find oddr of disk otk ‘wat cowtaing irem X
— wpy Votk wiro o buffer in main mewmy
= wopy item X o bulfer +o program variakle X

(2 write - trem DO @ wrikes Pco0) varioble X info DB item X
— St e ¢
= find addr of aitk block Yot containg rem X
— topy dick blouL into buffer in wmain memevy
= topy prog variade X into irem X% (ocabon in the buffer
— store updated ditk bloek from uffer back Yo disw
reod-set of o ivowtathon : set of iteme o fransackion veads

wrire-set of o dransathon = Set of Heme o trantatdon weites

DBMS Buffere

DBMS wnaiwkins several dota buffers n main wemey
. M‘\'o%e-\‘her wled datnbate ache

tach bubfer: Stoves 4 ditk olotk

I¢ buffert o0 occupied and new Wock vead, bubfer replacement
Po\m& wsed

- Least &ecenﬁa Vied LRV

CONCURRENCY CONTROL PROBLEMS

Exo\w\?\e OB: airline reservodion OR
- eath vewrd: one F\(ah*'s no. of veterved seas

(a) T (b) T,
read_item(X); read_item(X);
X=X-N, X=X+ M,
Figure 20.2 write_item(X): write_item(X):
Two sample read_item(Y);
transactions. Y=Y+N,
(a) Transaction T;. write_item(Y);
(b) Transaction Ta.

) LOST UPDATE PROBLEM

* 1 tromsockions oaccess same DB have opevatiovs interleaved
Sulh ¥aar values of Some DR wews are wremg

Gg)-. vead before write

(a)

Time

T T,
read_item(X);
X=X-N,
read_item(X);
X=X+ M,

write_item(X);
read_item(Y);

Y=Y+N,
write_item(Y);

write_item(X);

ltem X has an incorrect value because
its update by T, is /ost (overwritten).

() TEMPORMRY UPDATE | DIRTY READ PROBLEM

(b)

Trovsathion wpdotet o 08 ivem ond fails

Time

T, T,
read_item(X);
X=X-N,
write_item(X);
read_item(X);
X=X+ M,

read_item(Y);

write_item(X);

(3) INCORRECT SUMMPARY PROBLEM

© fmotner Yransachon veads dirtyy irew before i i volled ot

Transaction T; fails and must change
the value of X back to its old value;
meanwhile T, has read the temporary
incorrect value of X.

Tronsathion 4 ca\tu\M—ivxﬁ ooQregate tummary own 0B irewt
Travsacion 2 & updating OB itemt

(c)

T

Ts

read_item(X);
X=X-N,
write_item(X);

read_item(Y);
Y=Y+N,
write_item(Y);

sum =0,
read_item(A);

read_item(X);
sum = sum + X;
read_item(Y);
sum = sum+ Y;

sum = sum+ A;

T, reads X after N is subtracted and reads
--—— Y before N is added; a wrong summary
is the result (off by NV).

& UNREPENTARLE RERD PROBLEMW

Teansathion 1 reads

irem ‘nice

valne dmw‘)cd M between reads by another dransachion

j i T2
Read(X)
Read(X) &+
Write(X)
Read(X) &

) PHANTOM RERD PROBLEM

Aillereny X
volues

* Tecantathon reads an item Ywice
Ttem deleted between reads
Eoror Yacown

T1 T2

Read(X)
Read(X)
Delete(X)

Read(X)

Phantoms. A transaction T, may read a set of rows from a table, perhaps
based on some condition specified in the SQL WHERE-clause. Now suppose
that a transaction T inserts a new row r that also satisfies the WHERE-clause
condition used in T, into the table used by T,. The record r is called a
phantom record because it was not there when T starts but is there when
T, ends. T) may or may not see the phantom, a row that previously did not
exist. If the equivalent serial order is T, followed by T), then the record r
should not be seen; but if it is T, followed by T),then the phantom record
should be in the result given to T. If the system cannot ensure the correct
behavior, then it does not deal with the phantom record problem.

Jromeaction 5 Sytom, mrpt

(o) Transackion Operatiens

. BELIN-TRANSALTION
mares be@‘\m\nﬁ

2 READ o WRIYTE
© Yeod W write Operdtions gn DB exewted ar o pact of o
aansachn

3. END_ TRANSACTION
Specifies Hnok read[wirite operatime have ewded
here, Unede whether Changes 0 drantacion o be permanently
opp\ied Ccommixted) or oborred

k- COMMIT- TRAN SACTION
-+ succestful end of trawmsochon
ol Umwéec so.(ic.\“ wmmitted 4o DB

S ROLLRACL (oR MABORT)
+ ended uvssuaem‘ull\b
© dhanges undone

Read, Write

Begin r End
transaction ~— — ftransaction _.— ———_ Commit I
(AC'IVE/‘ »_Partially committed _—————(Committed)
i L fohiin L W o Sl
Abort Abort

P N = 2 F N
»(_Failed /4’(\Termmated 52

Figure 20.4
State transition diagram illustrating the states for fransaction execution.

(%)) S\As\—em Lo&

Lopy Weeping frack of trantation operativns

© Seqmentin), Oppend-onty fle kept on dish
Lo bulfers . memny with gk part of the lop ke
- When bouffers filled, opponded o file on dicw

* Types of lop records

1. [start_transaction, T]. Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value]. Indicates that transaction T has
changed the value of database item X from old_value to new_value.

3. [read_item, T, X]. Indicates that transaction T has read the value of database
item X.

4. [commit, T]. Indicates that transaction T has completed successfully, and affirms
that its effect can be commiitted (recorded permanently) to the database.

5. [abort, T. Indicates that transaction T has been aborted.

DeSirable Properties of Transathions

ACID

® Atomicity. A transaction is an atomic unit of processing; it should either be
performed in its entirety or not performed at all.

= Consistency preservation. A transaction should be consistency preserving,
meaning that if it is completely executed from beginning to end without
interference from other transactions, it should take the database from one
consistent state to another.

= Isolation. A transaction should appear as though it is being executed in iso-
lation from other transactions, even though many transactions are execut-
ing concurrently. That is, the execution of a transaction should not be
interfered with by any other transactions executing concurrently.

Durability or permanency. The changes applied to the database by a com-
mitted transaction must persist in the database. These changes must not be
lost because of any failure.

Unavacterisiapg Schedules Bosed @ Rewoveraboilityy

Schedule] histrin: & of n trontadions T,Ty, -, Ta & ovdering of
operations of the 4ransackions , interieaved

Toto) evdering of tramsackions: ovder of operoims in & $oid do
be total evdering it for ony wo operatims, one occurs ‘oefere

Yhe other
© ShorYhand
(a) T Ty

read_item(X);

X:=X-N;
read_item(X);
X=X+M, Sat r1(X); 1o (X)5 wy(X); 71 (Y)s waX); wy(Y);

Time write_item(X);

read_item(Y);
write_item(X);

Y=Y+N,

v write_item(Y);

(b) T, T

read_item(X);
X=X-N,
write_item(X); Sp: r1(X); wy(X); ra(X); wa(X); i (Y); ags

Time read_item(X);
X=X+M,;
write_item(X);

read_item(Y);

Conflicking Operafions in o Schedule: i ¥hey sokieky on 2
1 belovg 4o difE tvansachions

2. occess e Same ttem X

3. ok least one of e operatims ik 0 wrike —item(X)

- By 8y 00 ond w,(X) read-weite

0,00 and w, (X conflick
w0 ond W) | write-weike
conflict

- 2 operodions conklict if changing Haeir order can vewkt o
different outtome

lomplete Sunedule: f ol 2 wod

1. The operations in S are exactly those operations in T, T5, ... , T}, including
a commit or abort operation as the last operation for each transaction in
the schedule.

N

. For any pair of operations from the same transaction T}, their relative order
of appearance in § is the same as their order of appearance in T}.

3. For any two conflicting operations, one of the two must occur before the
other in the schedule."’

"®Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.

Locoverable tthedule: once commtted, o 4vovsacHm never needs +o
be rolled badk

- 8§ © rewverable ¥ no T i £ (omwite unkl oW o¥ner
ontations T2 ¥Aar wave written sowme em X Wit T reads
ove owmivted

Sa's 11(X); r2(X0; i (X); 11(Y); wa(X); c3 v (1); €5

S, is recoverable, even though it suffers from the lost update problem; this problem
is handled by serializability theory (see Section 20.5). However, consider the two
(partial) schedules S, and S, that follow:

Se n(X); wi(X); 7(X); i (Y); wa(X); ¢35 a3
Sz r(X); wy(X); rp(X); ry(Y); wa(X); wy(Y); €35 €5
Se: r(X); wi(X); r2(X); r1(Y); wa(X); wi(Y); ay; az;

S, is not recoverable because T, reads item X from T, but T, commits before T)
commits. The problem occurs if T aborts after the ¢, operation in S then the value
of X that T, read is no longer valid and T, must be aborted after it is committed,
leading to a schedule that is not recoverable. For the schedule to be recoverable, the
¢, operation in S, must be postponed until after T} commits, as shown in S;. If T}
aborts instead of committing, then T, should also abort as shown in §,, because the
value of X it read is no longer valid. In S, aborting T}, is acceptable since it has not
committed yet, which is not the case for the nonrecoverable schedule S..

Coscodeless Schedwle: evary drongackimn in & reads only iems weitten
‘% ommirred Arontations
- no cascnw\ivxa vollbatL will occur

Strict Sthedule: every dramtachim im $ ean neither read nor write
an itews X unhl Hae lagk fvantachon ¥k wrote X Wot (ommited
- recover: before image

Uharacterising Schedwles Based on Serinlitabilviy

@) Seria\ Senedwle
© M\ operatime of every T in € are exewuted consewdively n $
* No iw\'er\eavina

(@ T 2 ® T, T,
read_item(X); read_item(X);
X=X-N, X=X+M,
write_item(X); write_item(X);
read_item(Y); read_item(X);

Time Time ¥ y
I Y=Y+N, X=X-N,;
write_item(Y); write_item(X);
read_item(X); read_item(V);
X=X+M, Y=Y+N,
Y write_item(X); Y| write_item(Y);
Schedule A Schedule B

(@) Serialisable Schedule
© Gagmivalent Yo gerial Sthedule

O Resuly eguivolence
- produce e same vesuly (stote) of DB
— not alwoye foolproof

Figure 20.6 Si S

Two schedules that are result read_item(X); read_item(X);
equivalent for the initial value X=X+10; X=X~11;
of X=100 but are not result write_item(X); write_item (X);
equivalent in general,

o) Conflict equivalence of +wo sehedules
- velative ovder of conflicting operations ik ¥he tame

() View equivalewce

© Reorder V\ovs-wvx(’lio’n'v\g operofiont o ¢ uwil L i formed

- more tomplex: later

Serialitable Sthedwle:
thedule &

* R % D are eguivalent Coowflich)

(a)

Time

(a)

Time

T T,

read_item(X);

X=X-N,

write_item(X);

read_item(Y);

Y=Y+N,

write_item(Y);
read_item(X);
X=X+M,

write_item(X);

Schedule A

. D s Serialitoble

f C not equivalent

T

T

read_item(X);
X=X-N,
write_item(X);
read_item(Y);
Y=Y+N,
write_item(Y);

read_item(X);
X=X+ M,
write_item(X);

Schedule A

Time

(c)

Time

§ is wonflict equivalent %o a tevial

T, 7,

read_item(X);
X=X-N,
write_item(X);
read_item(X);
X=X+M,
write_item(X);
read_item(Y);
Y=Y+N,
write_item(Y);

Schedule D
T; 7,
read_item(X);
= read_item(X);
X=X+M,

write_item(X);
read_item(Y);
Yi=Y+N; write_item(X);
write_item(Y);

Schedule C

Juting,_tor_fuintiyaiity
* lonstruct 0 precedence/serialitaion graph (N, E)
© Eadh node ic o omtachen

© Badn edpe & 2 T2 T, for o paic of owflicing operakime
where i+ appears fictk n Ty 0nd then w T,

Algorithm 20.1. Testing Conflict Serializability of a Schedule S
1. For each transaction T; participating in schedule S, create a node labeled
T;in the precedence graph.

2. For each case in S where T; executes a read_item(X) after T; executes a
write_item(X), create an edge (T; — T)) in the precedence graph.

3. For each case in S where T; executes a write_item(X) after T; executes a
read_item(X), create an edge (T; — T)) in the precedence graph.

4. For each case in S where T; executes a write_item(X) after T; executes a
write_item(X), create an edge (T; — T)) in the precedence graph.

. The schedule § is serializable if and only if the precedence graph has no
cycles.

4

O: Drow fprecedence gropns for e ‘FO\\ow'ma

®) T T, ®) T, T,
read_item(X); read_item(X);
X=X-N, X=X+M,
write_item(X); write_item(X);

. read_item(Y); . read_item(X);
Time Time = !
Y=Y+N, X=X-N,
write_item(Y); write_item(X);
read_item(X); read_item(Y);
X=X+ M, Y=Y+N,
\/ write_item(X); \ write_item(Y);

Schedule A Schedule B

(©

Time

(A

()

T T,
read_item(X);
S read_item(X);
X=X+ M,
write_item(X); e
read_item(Y);
Yi=Y+N: write_item(X);
write_item(Y);
’]
Schedule C
. X
L — T, ®)
X
T (o)

T N
2
\—/

X

not+ serialisade

8: Ocaw precedente Orph

(b)

T, A
read_item (X);
X=X-N;
write_item(X);
read_item(X);
X=X+M,

read_item(Y);
Y=Y+N,
write_item(Y);

write_item(X);

Schedule D

T

8

=

Time

-

Transaction T, Transaction T, Transaction T,
read_item(Z);
read_item(Y);
write_item(Y);
read_item(Y);
read_item(X); roacd_Htoen{e;
write_item(X);
write_item(Y);
write_item(Z);
read_item(X);
read_item(Y);
write_item(Y); write_item(X):

Schedule E

X
T e 2T

"K Y /vz
Ty g

wown -Sexialigab\e

© Transaction T, Transaction T, Transaction T,
read_item(Y);
read_item(X): read_item(Z);
write_item(X);
write_item(Y);
Time write_item(Z);
read_item(Z);
read_item(Y);
write_item(Y); read_item(Y):
write_item(Y);
Y read_item(X);
write_item(X);
Schedule F
Y, X
T, - > Tl
serialicasole
2,7

VIEW EQUIVALENCE

Al 3 Londitong

1. The same set of transactions participates in S and §’, and S and §” include the
same operations of those transactions.

2. For any operation r,(X) of T;in §, if the value of X read by the operation has
been written by an operation w;(X) of T; (or if it is the original value of X
before the schedule started), the same condition must hold for the value of X
read by operation r(X) of T;in §'.

(X

If the operation wy(Y) of T} is the last operation to write item Y in §, then
wi(Y) of Tj, must also be the last operation to write item Y in §'.

(ongtfained write assumption:

- awy write operafion wi(X) i Ty is precceded Ly o G 0O
n T and the volue wrivten by w0 W T, depevde ey
on We volue of X read by LX)

- owpwindim of new X & fumchion FIX) on od X

- opposite of blind write

TRANSACTION SUPPORT WN SBL

PSAL: begin;, statements; Lommit/ aburt/ rollback <sp2;
Evev& franeathion hag either rollbatk, abort or Ommt

+ Unavocterishies of xroviathion ter by b taniation stoarement
0y Aceess wode

read only
rend write — defaud Cexcept for vead uncommirked)

@ Oiag)nosh'c avea Sie

no. of covditions (W) vaat can be simuitancously held
in e o\(uﬁm&ﬁo area
supply feedbask info on n motk recent SOL stakements

(2) Tsolahon (evel
read uncommitted
read ommitted
repeatable read
serlalitable - no dirty vead, wnrepeatable vead, phantom
reodg

Table 20.1 Possible Violations Based on Isolation Levels as Defined in SQL

Type of Violation
Isolation Level Dirty Read Nonrepeatable Read Phantom
READ UNCOMMITTED Yes Yes Yes
READ COMMITTED No Yes Yes
REPEATABLE READ No No Yes
SERIALIZABLE No No No

CONCURRENCY CONTRDL

enfsrce isolakon
DB cowncist)

— I Two-Phase Locking Technigues

Lotk OO): requesiing. drantachion lods itewn X
Unloce OO: item X made available to o\l tvamsachons

— I\ %‘W\ara Locv,'mc

Two States: locced and unlocked
Dithinet lotk with eath DB iten X
f value of lock on DB item X =1, X cannor be accessed

by operations nq,ues\—iv\a i
1}5 value =0, n be occeed and loued

turvent valwe of X% lotk: lock(x)

Operafiong = lock ~item OO and unlod-item(X) — atomic

lock_item(X):
B: if LOCK(X)=0 (*item is unlocked*)
then LOCK(X) «1 (*lock the item*)
else
begin

wait (until LOCK(X) =0
and the lock manager wakes up the transaction);

goto B
end;

unlock_item(X):
LOCK(X) « 0; (* unlock the item *)
if any transactions are waiting
then wakeup one of the waiting transactions;

Lock +oble: vewrd of ivews wrventiy locwed

Lock MANADLT: MBNOpes loke , stores into lock table

— 2 Shared [Excdusive CRead/Wrlte) Lotks

.

Seveval fead occesses oY unb\e wrike occess
Mu\‘HPle«mao\e locke

* Opevokions: vead-lot O0) | Wrire- lode 00O, unlotk ()
lock LX) hat b potsible stofes

Lot tnble enivies: lock (XD
[valune

< data-irem-_nome, lotk , no-of-reads locking- aniactigns>

-

Ptomic opemh‘ ons

.

read-lotl (X)

read_lock(X):
B: if LOCK(X) = "“unlocked"
then begin LOCK(X) < “read-locked";
no_of_reads(X) < 1
end
else if LOCK(X) = “read-locked"
then no_of_reads(X) <~ no_of_reads(X) + 1
else begin
wait (until LOCK(X) = “unlocked"
and the lock manager wakes up the transaction);
goto B
end;

© write-loo XD

write_lock(X):
B: if LOCK(X) = "unlocked"
then LOCK(X) <— “write-locked"
else begin
wait (until LOCK(X) = “unlocked"”
and the lock manager wakes up the transaction);
goto B
end;

unlocit (X))

unlock (X):
if LOCK(X) = “write-locked"
then begin LOCK(X) < “unlocked™;
wakeup one of the waiting transactions, if any
end
else it LOCK(X) = “read-locked”
then begin
no_of_reads(X) < no_of_reads(X) —1;
if no_of_reads(X) =0
then begin LOCK(X) = “unlocked”;
wakeup one of the waiting transactions, if any
end
end;

Lot Conversim

- Upgrading: T ik he only angach m ko(o\i% 6 vead
lot o0 X ot Hhe ¥ime it istues o vequest for o write
locw, the lock can ‘e upgraded

- Down mdine: W T holds a write \otw on X &t ¥he Yime
when v isues o request for o vead lol, it an be
dowvxbfadu\

- Opemﬁm definhoms Yo be wodified Yo account v Hhis
Fumﬁm\iha

uouuvx& alone doe¢ wnot g)uarun+¢e sc\ria\‘\m\oi\ihé

(a)

(c)

Time

T

P!

{ read_lock(Y);
read_item(Y);

{ unlock(Y);

{ write_lock(X);
read_item(X);

read_item(X);
unlock(X);
write_lock(Y);]
read_item(Y);

read_lock(X); g
1

X=X+Y, Y=X+Y,
write_item(X); write_item(Y);
i unlock(X); unlock(Y); 1
T T

read_lock(Y);

read_item(Y);

unlock(Y);
read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y=X+Y,;
write_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X=X+Y;
write_item(X);
unlock(X);

(b)

TWO - PHASE LOCLING PROTOCOL

Initial values: X=20, Y=30

Result serial schedule T,
followed by T,: X=50, Y=80

Result of serial schedule T,
followed by T,: X=70, Y=50

Result of schedule S:
X=50, Y=50
(nonserializable)

Figure 21.3

Transactions that do not obey two-phase locking.
(a) Two transactions T; and To. (b) Results of
possible serial schedules of Ty and Ty. (c) A
nonserializable schedule S that uses locks.

+ AU \oc\dng opem’n‘ma Preceo\e. the Ffirsk unloce operahm
in the 4frantathm

* Two phases: expanding / prowing phate, where loks ean only e
ncquived, and thrinking phase, where only exising lods wn be
released ond no lodt can be acquired

- wpgroding of lotke v expanding phate

- O\ON!\Q(‘ 1Ny of lov n .S\Arin\l—ina phase

Figure 21.4

Transactions 7" and Ty’, which are the
same as 7y and Tg in Figure 21.3 but
follow the two-phase locking protocol,
Note that they can produce a deadlock.

To

Ty

read_lock(Y);
read_item(Y);

write_lock(X);

read_lock(X);
read_item(X);
write_lock(Y);

unlock(Y) unlock(X)
read_item(X); read_item(Y);
X=X+Y, Y=X+Y,;
write_item(X); write_item(Y);
unlock(X); unlock(Y);

1

lock point

— 2. Variohms of 2PL Sysrems
2.1 Basic C(described above)

22 Lonservative [stakic: T wwnet lotk ol ireme W occesses before

rancathiom bc@iv\s execuhion Cto prevent deadlows)

- Predeclave vead_ser

2.2 Shvick: T does wot
Commits Y oaboovts

ond write-set
- U cannot lotk any one irem, does not 1ol 0wy irems

release omb wrivre

- shvict sdhedule foy mwvevubili\%

- not dendlock - free

of irems

lodks unh) ofter

2.4 Qiaorous-. T does wnot velease ony lods uniil ofrer v commits

& Oosfs
- easier Yo jmplement daan stvicy
- expav\dina phase uvkl i ewds

Doodlock, Prutvtion,

(@) T T ® X
read_lock(Y); ‘ *
read_item(Y); @ &5
read_lock(X); i R
Time read_item(X); ! Y |
write_lock(X);
write_lock(Y);

Figure 21.5
Illustrating the deadlock problem. (a) A partial schedule of 73" and T3’ that is
in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

" Transaction timestamp TSCTY) : swaller for older tramsachions,
unigme for every rrovncaction

ProYocols

I loce in advance
* If ony one wnot available, lock none

2. Ordered lotking
* Lotk DB ifems W o specific ovder

3. Wait-die
* T i Yo otk wem X bur cannot ewause Ty 18 holding
it
T TS £ T8LT, T is allowed to ot
Otherwise, Oboort T, (younper) amd restart lorer with the tame
timestomp
New old allowed 4o wait, new woung killed

¢ Wound - wait
* T i fo lotk wem X but cannot because Ty s holding
it

TF TS ¢ 18 LTQ, obory T.') Cg)oungcr) and vestart with
Same fimestoamp
Otherwise, T; (younger) ollowed +o wait

New young ollowed o woit, new old wounds existing youny
S. No waiting

6. Cowhous wu‘ﬁiv\a

DeEAD LOLK. DETECTLON

I Wait-for oraph
If eycles present, deadlock

2. Timeowts
If T woits for lovger Hhoan tavedhold, oburt dransdcion ond

astume v wae deadlocced

(Dvxcurrenqé Control Based on Timestamp Ovdering
N O

- Seriolitable i Same order at grder of Yimestomps

* Timestomp ordering (T0)

©Gadh e X hac 2 Hmestomp valwes: read-TSCX) and
write - T¢(X)

1. read_TS(X). The read timestamp of item X is the largest timestamp
among all the timestamps of transactions that have successfully read item
X—that is, read_TS(X) = TS(T), where T is the youngest transaction that
has read X successfully.

2. write_T8(X). The write timestamp of item X is the largest of all the time-
stamps of transactions that have successfully written item X—that is,
write_TS(X) = TS(T), where T is the youngest transaction that has written
X successfully. Based on the algorithm, T will also be the last transaction
to write item X, as we shall see.

Gasic TO

- TF rantachn T 4vies 4o issue o read-item(X) o o
write- trem00, ¥he value of TEED & compared with read-Ts(x)
and Write-T800)

S o mrderin\a violated, abort and rollback Ccaseading rollback)

1. Whenever a transaction T issues a write_item(X) operation, the following
check is performed:

a. Ifread_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T
and reject the operation. This should be done because some younger trans-
action with a timestamp greater than TS(T)—and hence after T in the
timestamp ordering—has already read or written the value of item X
before T had a chance to write X, thus violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the write_item(X)
operation of T and set write_TS(X) to TS(T).

2. Whenever a transaction T issues a read_item(X) operation, the following
check is performed:

a. Ifwrite_TS(X) > TS(7), then abort and roll back T'and reject the operation.
This should be done because some younger transaction with timestamp
greater than TS(T)—and hence after T in the timestamp ordering—has
already written the value of item X before T had a chance to read X.

b. If write_TS(X) < TS(T), then execute the read_item(X) operation of T and
set read_TS(X) to the larger of TS(T) and the current read_TS(X).

- No odeadlotls

- Storvahon

. Skritk TO

© Tromeathon T issues O read.item(X) or Write-irem OO where
TS > write-TXW) tyounger)

* read/wirite operption delayed uwtl T tommits &r oaloorte
CTELT?) = write-TSLXY)

+ Simulate locking

* No dendlots; T walke fsr T ownly if Teerd > 16D
Same with wrire_itembO and veud -TSLO
onflick seriolisability ond sarick

. Thomas® Write Rule

Does not ewforte cowklict secialisalbilivy

1. If read_TS(X) > TS(T), then abort and roll back T and reject the operation.

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than
TS(T)—and hence after T in the timestamp ordering—has already written
the value of X. Thus, we must ignore the write_item(X) operation of T'because
it is already outdated and obsolete. Notice that any conflict arising from this
situation would be detected by case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then
execute the write_item(X) operation of T and set write_TS(X) to TS(T).

L

NoSGL

Many feads, min writes
Cemi- structuved

thovaderishes reloted 4o diskributed DBe omd sustews

\ &m\abili’% Chorizontal scaling

2. Avoailobili

8. Replicodion wodels Crapcter- clave, master- moster)

&. Slr\afd(vxb of £iles Chorizonral Yur\—‘\-\’\miv\ﬁ)

S High performance docn Occess thadhingy o rnpe pactitioning)

Unovocterishics velated o dato. wmodels and aguery languaaes

- Not req,uirima schemao
2. less powerful guery lunauo%es
3. chcm‘mﬁ

Aupuy 08 NOSQL /&W

A
I. Document -bosed CMovxooDB , louch Ob, Roven, TervaStored)
2. Cew-valme stores (Berieley DB, LevelDR, Mem cached, Redis, Riak)
3. (olumn—loased Ccastandra, frmozon SimpleDB, Huase, Hupertalbie)
 Gropa-boted CPloe DR, Neok), Orient, Tnfinite GLroph)

All in the NoSQL Family

NoSQL databases are geared toward managing large sets of varied and frequently updated data, often in distributed
systems or the cloud. They avold the rigid schemas associated with relational databases. But the architectures
themselves vary and are separated into four primary classifications, although types are blending over time.

dnuhasu d.a!d:asos sloms
Store data elements in Empmslza connecﬂons Use a simple data mode| Alzo called table-style
document-like that pairs a unique key databases, they stare data
that encode In!om\m.ion storing relmed “nodes™ and its associated value in across tables that can
in formats such as JSON. in graphs to accelerate storing data elements. have very large numbers
. querying. 4 of cojumns,
Common uses include - Commeon uses include ¢
content managemant and Common uses include storing clickstream data Common uses include
monitoring web and recommendation engines and application logs. internet search and
maobile applications. and . other large-scale web
+ applications. ERAMPLES applications.
DIAMPLES bt Avrospike, DynamoDB, >
Couchbase Server, EXAMPLES Redis, Riak EXAMULES
CouchDB, MarkLoglic, AliegroGraph, IBM Accumulo, Amazon
MongoD8 Graph, Neodj SimpleDB, Cassandra,
HBase, Hypertable
Comparision of Different NoSaL OBe
Data model 4 Performance ¢ Scalability ¢ Flexibility ¢ Complexity ¢ Functionality ¢
Key-value store high high high none variable (none)
Column-oriented store | high high moderate low minimal
Document-oriented store | high variable (high) ' high low variable (low)
Graph database variable variable high high graph theory
Relational database variable variable low moderate relational algebra
9: What OB 4o use)
@ Glealate average income celokional

(6) RBuild thopping tary key-value

((>) S‘\'(Nin&

ghvuchared product information Aocumeny

@ Oescribing how user got from point B o & graph

— MONGODB

- Dotument (3SON)

> db.createCollection("courses")

£ "gk® i 1)

> db.courses.find()

> db.courses.insert({"code": "UE19CS301", "name": "DBMS", "credits": 4})

WriteResult({ "nInserted"” : 1 })
> db.courses.find()
{ "_id" : ObjectId("61b5ebb36aff316669c1258d"), "code" : "UE19CS301", "name" : "DBMS", "credits" : 4 }

- OjeckTd: 12 byres te+3+242)

. tmbedded Oatnn Meode\

« Bl reloted doka. W tingle docawent

{a) project document with an array of embedded workers:
{

_id: “prm
Pname: “ProductX”,
Plocation: “Bellaire",
Workers: [

{ Ename: *John Smith",
Hours: 825

).

(Ename: *Joyce English™,
Hours: 20.0

}

)i

3. Normalised dott ywode

* 4NF

(c) normalized project and worker documents (not a fully normalized design
for M:N relationships):
{

_id: o 24
Pname: “ProductX”,
Plocation: “Bellaire”

)

{ _d: “W1",
Ename “John Smith",
Projectid: P17,

Hours: 325

Commawds

. Vse Commwiond
¢ townect Cor treate awnd Cowneddd 4o o OB

> use testdb
switched to db testdb
2. db Command
. S\Wow ownectred dattbase
> db
testdb

3. Show dbs /o\o\ﬂbaszs

> show databases > show dbs

admin 0.000GB admin 0.000GB
config 0.000GB config 0.000GB
local 0.000GB local 0.000GB

& db- dropDataloase ()

> db.dropDatabase()
{ "ok" : 1}
Recall: lab week 1
O: Disploy Acst document wn collection employee

db- employee . £ind One ()

8. Display the document of employee with empid=2
oo emplogee. findOne ({ “ewpid”: 2%)

8: Return documents where birth is between 1940-01-01
and 1960-01-01

db.employees.find ({“"Birth”: { S$Sgt: new
Date ('1940-01-01"), $1lt: new Date('1960-01-01")}1})

— KEN-VALWE 0B
No query lamguage 5 sec of operations

| Phone [T)
LR [T 1ol © Value: (123) 456-7890)

» Key :artist:1:name
. * Value :JM

IP Forwarding [o Key : 202.45.12.34
Table | * Value : 01:23:36:0f:a2:33

| » Key : 234567890
, Trading * Value :CERN, Sell, 50, 52.78

Use cases

« Storing Session Information

 User Profiles, preferences

» Shopping Cart Data

* Article/Blog Comments

 Product Categories/Details/Reviews
* Internet Protocol Forwarding tables
* Telecom directories

ILey: unique 10
Vole: texk, wuwver ere
— DYNAMODR
Uoud - based, AWS
Tobles, items, ottributes
Number of oatir-value paire n on item
Toble nowme % primary wey

Tupes of PKs

u A single attribute. The DynamoDB system will use this attribute to build a
hash index on the items in the table. This is called a hash type primary key.
The items are not ordered in storage on the value of the hash attribute.

® A pair of attributes. This is called a hash and range type primary key. The
primary key will be a pair of attributes (A, B): attribute A will be used for hash-
ing, and because there will be multiple items with the same value of A, the B
values will be used for ordering the records with the same A value. A table
with this type of key can have additional secondary indexes defined on its
attributes. For example, if we want to store multiple versions of some type of
items in a table, we could use ItemID as hash and Date or Timestamp (when
the version was created) as range in a hash and range type primary key.

Primary Key Products
{Partitaon Key Sort Key‘ Attributes

)
(\
} !
P":"D“c‘ Schema is defined per item

1 Odyssey Homer 1871
2 m 6 Partitas Bach
Items—
2 Album ID: Partita
Track ID No. 1
. Drama,
3 TheKid ~ OM& Chaplin
— (OLUMN-BAS €D
- Group columns nto olumn Families
Table ‘ w(:r:l:
|Rowid | | cowmnFamily | column Family Column Family Column Family |W
con | co cots ’ col col2 col3 gcol col2 col3 coll col2 cold ([wwvmass i

1 "‘
2 | |
; | []

* Table: Data represented as a collection of rows sorted on RowID

* Row: Collection of column families identified by RowlD (Row Key), a byte array, serving as the primary key for the
table and is indexed for fast lookup

* Column: Collection of key-value pairs — represented by ColumnFamilyName:ColumnName

« Column family: Collection of variable number columns

« Cell: Stores data and is a combination of {row key, column, timestamp/version} tuple as a byte array

* Timestamp (System timestamp) or any other unique version number within a Rowld, for the cell

HarryPotter Info:{height:”4.5ft”, age: “11@2011"}
School:{House:"Gryffindor”, Sports:"Quidditch”}
Voldemort Info:{height:"7ft”, age: “50"}

School:{House:"Syltherin”, Role:”Prefect”}

Hbase Vsooye

. (reare toble tab\e name

hbase(main):001:0> create 'test', 'data'
0 row(s) in 0.9810 seconds qi

column
fomily name

2. Tatery valwes table name

hbase(main):003:0> put 'test', 'rowl', 'data:1', 'valuel'
hbase(main):004:0> put 'test', 'row2', 'data:2', 'value2'
hbase(main):005:0> put 'test', 'row3', 'data:3', 'value3'

T | 1
row \ey column value
name

3. ReAvieve Volmes

/ specific vow

hbase(main):006:0> get 'test', 'rowl'
COLUMN CELL

data:1 timestamp=1414927084811, value=valuel

1 row(s) in 0.0240 seconds

hbase(main):007:0> scan 'test'
ROW COLUMN+CELL

rowl 1? column=data:1, timestamp=1414927084811, value=valuel

a\\ CowgS

¢. CRLD OPeva—\'ilMS

(c) Some Hbase basic CRUD operations:
Creating a table: create <tablename>, <column family>, <column family>, ...
Inserting Data: put <tablename>, <rowid>, <column family>:<column qualifier>, <value>
Reading Data (all data in a table): scan <tablename>
Retrieve Data (one item): get <tablename> <rowid>

— (RAPH DB

Relation Ships bfw data impoy+ont

© RDBML: yoin for reloaxionchipe
Groph DB: townections alsngside dato

© Neoly: nodes and relotionships
Nodes: k-v pairt (any number) coMed properties

© Re\afionchips: cownections betwten node entities
- diredhon
- start wnode
- end node
= properties

" Cypher Query Languaye C(LQL)

‘HAS CEO

start_date: 2008-01-20 :LOCATED IN

City

Employee <« Company

name: Amy Pelers
date of birth: 1984-03-01
employee ID: |

Graph ve RDR

* ROBMS
Employees Dept_Members Departments
815 A\'\Cet(..T 815 111 * 117 apuTURE
e TuRSISERoE T
= S——
8 T 11 0815
N 9 P
N
\ 815 18'\ —— - 181 AA?-
Associative Entity,
JOIN Table,
or Lookup Table
- Geoph
:Department
-y
e .,BELQ!?ES«‘B’” 4FUTURE
Person il {BELONGS TO _ :Department
Alice o * P081s
. . T BEg
P "‘*\N\Gf;ro :Department
> A42
Vse (ages

* Prouwd derechen
- Networw w\o“i‘\-wiv\%
© Rewmmendonon engines

SgMax

- Week 3 lab

Figure 24.4

Examples in Neo4j using the Cypher language. (a) Creating some nodes. (b) Creating some relationships.

(a) creating some nodes for the COMPANY data (from Figure 5.6):

CREATE (e1:
CREATE (e2:
CREATE (e3:
CREATE (e4:

CREATE (d1
CREATE (d2

CREATE (p1:
CREATE (p2:
CREATE (p3:
CREATE (p4:

EMPLOYEE, {Empid: ‘1', Lname: ‘Smith', Fname: ‘John', Minit: ‘B'})
EMPLOYEE, {Empid: ‘2', Lname: ‘Wong', Fname: 'Franklin'})
EMPLOYEE, {Empid: ‘3", Lname: 'Zelaya', Fname: ‘Alicia'})

EMPLOYEE, {Empid: ‘4', Lname: '‘Wallace', Fname: 'Jennifer', Minit: 'S'})

: DEPARTMENT, {Dno: '5', Dname: ‘Research'})
: DEPARTMENT, {Dno: ‘4', Dname: ‘Administration'})

PROJECT, {Pno: '1', Pname: ‘ProductX'})
PROJECT, {Pno: '2', Pname: ‘ProductY'})
PROJECT, {Pno: '10', Pname: ‘Computerization'})
PROJECT, {Pno: '20', Pname: 'Reorganization'})

CREATE (loc1: LOCATION, {Lname: '‘Houston'})
CREATE (loc2: LOCATION, {Lname: 'Stafford’})
CREATE (loc3: LOCATION, {Lname: ‘Bellaire’})
CREATE (loc4: LOCATION, {Lname: ‘Sugarland'})

(b) creating some relationships for the COMPANY data (from Figure 5.6):
CREATE (e1) - [: WorksFor] —> (d1)
CREATE (e3) - [: WorksFor] —> (d2)

a?EATE (d1) = [: Manager] —=> (e2)
CREATE (d2) - [: Manager] = (e4)

CREATE (d1) - [: LocatedIn] => (loc1)
CREATE (d1) - [: LocatedIn] => (loc8)
CREATE (d1) — [: LocatedIn] => (loc4)
CREATE (d2) - [: LocatedIn] => (loc?2)

CREATE (e1) — [: WorksOn, {Hours: '32.5'}] => (p1)
CREATE (e1) — [: WorksOn, {Hours: '7.5"}] => (p2)
CREATE (e2) - [: WorksOn, {Hours: '10.0'}] => (p1)
CREATE (e2) — [: WorksOn, {Hours: 10.0}] = (p2)
CREATE (e2) - [: WorksOn, {Hours: '10.0'}] => (p3)
CREATE (e2) - [: WorksOn, {Hours: 10.0}] => (p4)

—— IN-MEMORY OATABASE
© Tn- Memsvy thvage and computarim
* Fast

© Rislk of dato. loss due to server failure

Application

>

E Master Server

RAM:
Data

Partition 1 S Partition 2 - Partition 3 Partition 4

In-Memory Database

- Volt 0B

